März 16th, 2023 by Afrigal

udo matthias drums electronic software – afrigal

 

 

 

Bebe Barron

Bebe Barron: Co-composer of the first electronic film score ...

Im Studio der Barrons nahmen auch verschiedene andere Avantgarde-Musiker auf, unter anderem John Cage.

Interview im Jahr 1997
Bebe Barron (16. Juni 1925 – 20. April 2008 (82 Jahre)) und Louis Barron (23. April 1920 – 1. November 1989 (69 Jahre)) waren zwei amerikanische Pioniere auf dem Gebiet der elektronischen Musik. Ihnen wird zugeschrieben, die erste in den Vereinigten Staaten komponierte elektronische Musik für Magnetband und die erste vollständig elektronische Filmmusik für den MGM-Film Forbidden Planet (1956) geschrieben zu haben.

Sie wurde am 16. Juni 1925 als Charlotte May Wind in Minneapolis als einziges Kind von Ruth und Frank Wind geboren. Sie studierte Klavier an der University of Minnesota und einen postgradualen Abschluss in Politikwissenschaft. In Minneapolis studierte sie Komposition bei Roque Cordero. Sie zog nach New York, arbeitete als Forscherin für Time-Life und studierte Musikkomposition. Sie studierte Musik bei Wallingford Riegger und Henry Cowell.
Sie heiratete 1947 Louis Barron. Sie lebten in Greenwich Village. Es war Louis, der ihr den Spitznamen „Bebe“ gab. Sie starb am 20. April 2008 in Los Angeles.

Posted in Afrigal, Art Kunst allgemein, Ästhetik, elektronische Klangmusik, experimental, Klanglandschaften Tagged with: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

März 15th, 2021 by Afrigal

udo matthias drums electronic software

 

 

 

Composing Noise

Lärm Komponieren
Jae Ho Chang

Übersetzung Udo Matthias

https://afrigal.online/2019/10/noise-rock/

afrigal udo matthias#1

s.a hier ganz am Ende

Im Allgemeinen wird Rauschen häufig als unerwünschtes Geräusch definiert. Typischerweise kann dies verschiedenes sein.
Maschinengeräusche aus einem Baugebiet, das Geräusch eines Zuges, der in der Nähe Ihres Hauses vorbeifährt, laute Rock’n’Roll-Musik aus der Nachbarschaft, das plötzliche Klingeln eines Telefons in der Nacht. Alle diese Geräusche können als ‚Rauschen‘ bezeichnet werden, dies ist jedoch für unseren Zweck unbefriedigend.

Die Definition von Lärm in Bezug auf die Akustik unterscheidet sich von dieser allgemeinen. Während die allgemeine Definition subjektiv und umständlich ist, ist die akustische objektiv und bedingungslos.
In diesem Kapitel werden die Definitionen in drei Bereichen beschrieben. Der erste und der zweite sind die Zeitbereich bzw. Frequenzbereich, welche die zwei der wichtigsten im
Bereiche der Akustik sind. Die dritte, die musikalische Domänendefinition, beschreibt, wie das Rauschen als akustische Definition als musikalisches Material verwendet wird und wie es sich zu anderen Klänge eines Komponisten unterscheidet. Da die Rolle des Rauschens in einer Musik vom Komponisten abhängt , z.B. als subjektives oder ästhetisches Konzept, sollte man nach der eigenen Definition des Komponisten in seiner oder ihren Arbeiten jenseits der akustischen Definitionen suchen.

Zeitbereichsdefinition

Im Zeitbereich kann Rauschen als Schall definiert werden, bei dem sich die Amplitude über der Zeit ändert und zwar einem gewissen Grad an Zufälligkeit. Wenn der Grad maximal ist, ist das Rauschen vollständig aperiodisch und wird zu einem „perfekten“ Rauschen (sogenanntes weißes Rauschen), bei dem die Amplitude eines beliebigen Momentes in keiner sinnvollen Weise mit einem anderen verbunden ist. Vielleicht existiert dieses „perfekte“ Geräusch gar nicht, weil die meisten Klänge mehr oder weniger Korrelationen in sich haben. Weil der Grad dieser Korrelation oder der Zufälligkeit, das Timbre oder die Farbe des Rauschens variieren lässt.
Der Zeitbereich ist sehr interessant für die Rauschsynthese, insbesondere für die Herstellung eines abstrakten Modells der Rauschsynthese. Die in diesem Artikel beschriebenen Techniken haben ihre eigenen Methoden zur Erzeugung von Rauschen im Zeitbereich.
Diese Domäne ist jedoch bei der Analyse von Schall nachteilig; das heißt, es ist sehr schwierig die Unterscheidung zwischen Rauschen und Nicht-Rauschen durch Betrachten der Zeitbereichs Darstellung zu geben. Es gibt eine Möglichkeit, den Klang im Zeitbereich durch Zeichnen der zu analysieren Amplitudendichteverteilung zu beschreiben. Wir können sagen, dass ein Ton weißes Rauschen ist, wenn die Amplitude der Wahrscheinlichkeitsverteilung des Klangs eine Gaußsche Form hat. Aber das reicht nicht aus etwas über die Eigenschaft des Rauschens auszusagen, weil einige Arten von Rauschen wie ‚binäres Rauschen‘ sehr
unterschiedliche Formen der Amplitudenwahrscheinlichkeitsverteilung haben (Tempelaars 1996).

Frequenzbereichsdefinition

Im Frequenzbereich kann Rauschen als Schall mit kontinuierlicher Leistungsdichte über einen bestimmten Frequenzbereich definiert werden. Wenn die Leistungsdichte aller Frequenzen gleich ist, nennen wir es weißes Rauschen. Die Leistungsdichte von rosa Rauschen aber nimmt mit um 3 dB pro Oktave ab.
Die Frequenz steigt und die des braunen Rauschens nimmt um 6 dB pro Oktave ab

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bild oben: Rauschen im Zeitbereich (links) und deren Dichte im Frequenzbereich
(richtig). (a) Weißes Rauschen, (b) Rosa Rauschen, (c) Braunes Rauschen.

Der Frequenzbereich hat den Vorteil, dass er die Eigenschaften eines Rauschens
ziemlich klar zeigt. Wenn wir sehen, dass die Leistungsdichte über einen bestimmten Frequenzbereich kontinuierlich ist, können wir erkennen, dass der Ton ein Rauschelement hat.

Noise wurde von Komponisten gemäß ihrer Philosophie häufig gemeinsam mit den oben beschriebenen grundlegenden akustischen Definitionen neu definiert.
Für Stockhausen ist Lärm jede Art von Klang. Ein perfekt periodischer Sound, wie z.B.
eine Sinuswelle ist somit der Extremfall von Rauschen.

Dies könnte die vernünftigste (und allgemeinste) Definition im musikalischen Bereich, da die meisten Klänge einen Aspekt des Geräusches im Sinne der Akustik beinhalten.

Auch für Xenakis ist Lärm eines der wichtigsten Elemente der Musik. Er überlegte, dass „reine“ elektronische Klänge von Frequenzgeneratoren erzeugt, unnatürlich sind. Er sagte, dass nur wenn sie von anderen „konkreten“ Geräuschen umrahmt werden, die aus der realen Welt aufgenommen wurden,  die elektronische Geräusche mächtig werden können.
In Koenigs SSP (Sound Synthesis Program) gibt es gar keine Definition von Rauschen, weil der Komponist der sie entwirft nicht die spektralen Komponenten des Klangs, sondern wählt die Regeln für direktes Erzeugen von Klangbeispielwerten im digitalen Zeitbereich verwendet. Der Komponist kann aber natürlich den Grad des Rauschens steuern, indem er verschiedene Funktionen auswählt, welche verschiedene Grade der Zufälligkeit oder Wiederholung besitzen. Die Definition von Rauschen in SSP hängt daher von der Wahrnehmung des Komponisten ab.

 

Fazit

Rauschkomponenten in einem Sound werden oft von periodischen unterschieden und werden manchmal als nichtmusikalische Elemente betrachtet. Es wurde viel Forschung zur Geräuschreduzierung betrieben (Harris 1957).

Periodische Komponenten eines Klangs stehen typischerweise im Mittelpunkt von Schallanalysetechniken wie z.B. als Fourier-Transformation und McAulay-Quatieri (MQ) -Analyse (McAulay und Quateri 1985).
Klangsynthesetechniken wie die additive Synthese und die Frequenzmodulation
konzentriert sich auch auf periodische Komponenten.
Ein interessanter Klang enthält jedoch normalerweise sowohl periodische Komponenten als auch Rauschkomponenten, deren Grad sich im Laufe der Zeit mehr oder weniger ändern. Es hat wenig Sinn, zu behaupten,
ein Ton ist Lärm und der andere nicht. Genauer ist, dass ein Ton einen
größerern Grad an Lärm hat als ein anderer.

Daher können Klänge alle möglichen Grade an Zufälligkeit oder Korrelation (oder einfach gesagt, Periodizität) haben, einschließlich Sinuswellen und weißem Rauschen, die man als Musikmaterial verwenden kann.

Eine kurze Geschichte des Rauschens

Wo immer wir sind, hören wir meistens Lärm. Wenn wir es ignorieren, stört es uns. Wenn wir es hören, finden wir es faszinierend. Das Geräusch eines Lastwagens mit 50 km/h. Regen. Statisch zwischen den Stationen. Wir wollen  diese Sounds erfassen und steuern, um sie nicht als Soundeffekte, sondern als zu verwenden Musikinstrumente.

John Cage (1967)

Vielleicht ist es schon sehr lange her, dass Menschen die potenzielle Kraft und Schönheit des Lärms fanden.
Bis zum 20. Jahrhundert wurde Lärm jedoch als musikalisches Element abgelehnt oder gelegentlich nur als Soundeffekt verwendet. Anfang des 20. Jahrhunderts, fingen Komponisten an,  dem Krach Aufmerksamkeit zu schenken.
Einige Komponisten betonten Rauschelemente in herkömmlichen Instrumenten oder verwendeten sie als extrem dissonante Akkorde in ihrer Arbeit. Es gab auch Komponisten wie Luigi Russolo, die speziell für innovative Geräuschinstrumente komponierten, die er selbst hergestellt hat.

Heute kann jeder mit MAXMSP eigene Instrumente ganz nach Belieben bauen. (Anm. d. Übersetzers)
Die Verfügbarkeit elektronischer Geräte ab etwa 1950 gab den Komponisten mehr
Möglichkeiten, mit Lärm zu arbeiten. Sie konnten ihre eigenen Geräusche komponieren und sie hatten es bessere musikalische Kontrolle über das synthetisierte oder aufgenommene Rauschen. Komponisten wie Pierre Schaeffer haben aufgenommenen Geräuschen aus der realen Welt verwendet. Andere Komponisten wie Stockhausen, synthetisierte verschiedene Geräusche unter Verwendung elektronischer Geräte wie Sinusgeneratoren, Rausch Generatoren, Impulsgeneratoren und Filter.
Zunächst wird jedoch die Definition von Rauschen erörtert. Da die Arten von Geräuschen nahezu unbegrenzt und die ästhetischen Ansätze sehr vielfältig sind, gibt es leider auch zu viele Definitionen derer. Daher werde ich mich auf die Definition und Aspekte von Lärm in akustischer Hinsicht konzentrieren.

 

Nicht elektronische Geräusche

Nach der Entwicklung der elektronischen Musik um 1950 begann Lärm
eine wichtige Rolle als musikalisches Element in einem musikalischen Werk zu spielen.

Es gab jedoch viele Versuche, neue Klangfarben zu suchen, unter anderem auch musikalische Geräusche, und schon zu Anfang des 20. Jahrhunderts. Erstellen von Geräuschinstrumenten, Hervorheben der Geräuschelemente bei konventionellen Instrumenten, die die Rolle von Schlaginstrumenten erhöhten und auch die Verwendung von extrem dissonanten Akkorden, sind einige Beispiele dieser Zeit.

 

Die Kunst der Geräusche

Zu Beginn des 20. Jahrhunderts nahm eine Gruppe italienischer Komponisten, Futuristen genannt, verschiedene Geräusche als musikalische Ressource auf. Diese Geräusche waren für Menschen keine neuen Geräusche, sondern Geräusche, die sie aus ihrem täglichen Leben zu hören gewohnt waren. Es war jedoch innovativ, diese Geräusche als musikalische Klänge zu verwenden.
Luigi Russolo, einer der futuristischen Gruppen, machte ein Geräuschorchester mit verschiedenen Geräuschen, Instrumente und komponierte einige Stücke mit diesem Orchester. (Die futuristische Bewegung war vor allem literarisch und visuell. Russolo hatte sich dieser Bewegung als Maler und später als malender Musiker angeschlossen.) Die Instrumente heißen Howler, Roarer, Cracker, Gummi, Hummer, Gurgler,
Zischer, Pfeifer, Burster, Croaker und Rustler. Er schrieb in seinem Buch „The Art of Noises“ Erstveröffentlichung 1916; Russolo 1986), dass sein Geräuschorchester die Folge eines Musicals sei, das mit Aktivitäten aus dieser Zeit arbeite: „Um unsere Sensibilität zu erregen und zu wecken, Musik entwickelte sich in Richtung der kompliziertesten Polyphonie und in Richtung der größten Vielfalt von Instrumenten Klangfarben und Farben.

Er hat die komplexesten Folgen dissonanter Akkorde gesucht,
die sich vage auf die Entstehung von Musikgeräuschen vorbereitet haben.
Leider hat er nicht beschrieben, wie die Instrumente gebaut wurden, aber er hat das jeweilige Instrument beschrieben,welches z.B. einen bestimmten Bereich spielbarer Tonhöhen (normalerweise 2 Oktaven) hatte. Diese Instrumente also waren nicht nur Geräuschgeneratoren, sondern echte Instrumente.
Seine Kompositionen waren zu innovativ, um von einem Publikum gefeiert zu werden.

Aber dieses Paradigma, die Verschiebung von ihm, hatte wahrscheinlich einen gewissen Einfluss auf zeitgenössische Komponisten.

 

Perkussions/Schlagzeugmusik

Während Russolo neue Instrumente für Musikgeräusche herstellte, haben viele Komponisten nachgeforscht welche neuen Möglichkeiten es mit konventionellen Instrumenten gibt.
Wir können sagen, dass Percussion die Instrumentengruppe war, in der der maximale Grad von Entwicklung und Experiment hat stattgefunden.

Schlaginstrumente, die man in einem Orchester meistens für Effekte verwendete, wurden, wenn auch als nicht intonierend bezeichnet, als musikalische bewertet.

Als die Rolle des Schlagzeugs sich zu erweitern schien, haben Komponisten verschiedene Größen und Typen (Metall, Holz, Stoff, Glas) von Schlägeln für die herkömmlichen Schlaginstrumente verwendet, um damit mit neuen Klangfarben zu experimentieren. Es wurden auch exotische oder ausländische Instrumente eingesetzt. Auch verschiedene Spiel-
techniken und neue Bewertungen wurden entwickelt.
Die Zunahme des musikalischen Einsatzes von Percussion führte schließlich zu Kompositionen für Schlagzeugensemble wie Edgard Varèses Ionisation (1931).

In diesen Arbeiten, verwendet er als wichtigste strukturelle Rolle (im großen oder kleinen Maßstab) nicht die Melodie oder die Änderung der Tonhöhe, wie dies konventionell der Fall war, sondern die Änderungen der Klangfarbe.

Dies könnte als Beginn derTechniken zum „Komponieren von Lärm“ bezeichnet werden.
Eine besonders auffällige Ergänzung ist die Verwendung der Bremstrommel.

Die Tatsache, dass ein Teil von einem Auto Mitglied der Percussion-Familie (Klasse) wird, zeigt die Möglichkeit, dass jedes Objekt musikalisch verwendet werden kann.

Heute kann man diese Sounds und auch alles andere per Software verwenden. Die hat weniger Gewicht, aber auch andere Nachteile.

Schallmasse

Es gab Komponisten, die Geräusche nur mit den herkömmlichen Techniken der Instrumente erzeugen wollten. Sie haben versucht, mit starken dissonanten Akkorden musikalische Geräusche zu machen.
Henry Cowell schlug in den 1920er Jahren vor, Akkorde mit Dur- oder Moll-Sekunden zu bauen.

Er hat sogar vorgeschlagen Akkorde mit engeren Intervallen, die aus dem 16. Teilton abgeleitet werden können als natürlich vorkommendes Fundament zu verwenden. Er benutzte Dur- und Moll-Sekunden, um Akkorde zu bauen und entwickelte Spieltechniken wie das Drücken aller weißen oder schwarzen Tasten oder beider in bestimmte Reichweite auf dem Klavier mit der Handfläche oder dem Unterarm des Interpreten.

Ein solcher Akkord wird von benanntCowell selbst als ‚Ton-Cluster‘ (Cowell 1930).

Einige Komponisten haben mithilfe von Polytonalität oder Akkorden Effekte erzeugt, die Tonclustern ähneln die die Eigenschaften der Polytonalität haben.

Strawinsky zum Beispiel in seiner Arbeit Le Sacre du Printemps (1913) machte ein faszinierendes Geräusch für den harten Rhythmus, indem er zwei Akkorde Eb7 und Fb addierte.

Diese Techniken haben es größtenteils geschafft, musikalische Geräusche zu erzeugen, indem sie Tonhöhe und Harmonie minimierten mit gleichzeitiger Maximierung der Textur, durch Veränderung der Klangfarbe und des Rhythmus ganz bestimmter Passagen.

Diese Techniken wurden kontinuierlich von vielen Komponisten verwendet.

Wir können Beispiele hören in

Luigi  Nonos Chorstücke wie Il canto sospeso (1956),

Pendereckis Threnodie für die Opfer von Hiroshima (1960),

Góreckis Sconti (1960),

 

György Ligetis Atmosphéres (1961) und so weiter.

 

Neue Instrumentaltechniken

Wir haben bereits neue Techniken für Schlaginstrumente gesehen. Viele Techniken für andere Instrumente wurden aber ebenfalls entwickelt.
Für Streichinstrumente sind möglicherweise herkömmliche Techniken wie Zupfen (Pizzicato) impliziert für neue Möglichkeiten. Neue Techniken wie das Klopfen der Saiten oder des Körpers für einen perkussiven Effekt, Streichen auf der Brücke oder zwischen Brücke und Saitenhalter, Streichen mit sehr starkem Druck um ein Geräusch zu machen, die höchste Note spielen oder zupfen, mit unregelmäßigem Tremolo spielen, wurden erstellt.

Pendereckis Threnodie für die Opfer von Hiroshima (1960) ist ein gutes Beispiel.

Bei Holzblasinstrumenten kann man beispielsweise auf die Tasten tippen, ohne zu blasen
für einen Perkussiven-Effekt, Multiphonics für neues Timbre usw. wurden entwickelt.
Die Multiphon-Technik dient zum gleichzeitigen Erzeugen von zwei oder mehr Tönen, wo man durch eine starke Kraft Obertöne erzeugt auch durch Veränderung der Fingersätze, des Lippendrucks und der Position sowie des Luftdrucks (Bartolozzi 1971).

gebrauchtes Buch – Bruno Bartolozzi (Reginald Smith Brindle, Anm.) – Neue Klänge für Holzblasinstrumente
Der Klang, den wir mit dieser Technik erhalten, ist keine klare Harmonie, sondern eine ziemlich laute Klangfarbe.

Bild oben: Eine der Multiphonics, die die Flöte produzieren kann. Der obere Teil
stellt den Fingersatz dar und die Noten sind das, was tatsächlich klingt. Dies
Akkord, der Mikrotöne enthält, ist nicht klar, erzeugt aber ein dissonantes Timbre.

Neue Techniken für Blechbläser, Schlagzeug, Tasteninstrumente und Gesang wurden ebenfalls eingeführt entwickelt (David Cope 1993).

David Cope, der 2021 seinen 80. Geburtstag begeht, ist Komponist und ein Pionier im Experimentieren mit Künstlicher musikalischer Intelligenz und Kreativität. Bereits in den 1980er-Jahren entwickelte er Programme zum Komponieren von Musik.

Für Keyboards finden wir die präparierte Klaviertechnik, für das Ändern des Piano-Timbres (Klangfarbe) durch Platzieren von Objekten wie Clips, Gummi, Muttern und Steinen ​​auf und zwischen den Saiten, in Kompositionen wie John Cages Sonaten und Zwischenspielen
(1946-48).

Für die Stimme wurden Geräusche wie Lachen, Sprechen und Zischen als Musik hinzugefügt
Ausdrücke (zum Beispiel in Ligetis Aventures (1962)).

Fazit
Die oben beschriebenen Versuche hatten nichts mit den Techniken der Elektronischen Musik zu tun. Es ist jedoch immer noch interessant, neuere Instrumentale-Timbres (Kangfarben) zu erforschen und mit ihnen zu komponieren, wenn es uns die Möglichkeit gibt, neue und interessante musikalische Formen zu schaffen.

 

Musique Concrète
Kurz vor 1950 begannen die französischen Komponisten Pierre Schaeffer und Pierre Henry elektronische Medien zum Komponieren von Musik zu verwenden. Dies mit verschiedensten Geräuschen. Während Russolo die Instrumente baute, simulierten Schaeffer und Henry, die Geräusche aus der realen Welt und verwendeten diese Geräusche für elektronische Aufzeichnungen und Bearbeitungen.

Frühe Aufnahmetechnologie
Erst seit den 1920er Jahren setzen Musiker elektronische Aufnahmetechnologie ein. Komponisten wie Darius Milhaud, Paul Hindemith und Ernst Toch experimentierten mit variabler Geschwindigkeit Phonographen im Konzert (Ernst 1977). In John Cages Imaginary Landscape No.1 (1939) hat der Komponist zwei Phonographen mit unterschiedlicher Geschwindigkeit verwendete für Aufzeichnungen, die Töne enthielten. Solche Aufzeichnungs- und Wiedergabesysteme waren jedoch zu teuer, zu schwer zu transportieren und wurden deshalb bis zum Ende des Zweiten Weltkriegs nicht verwendet.

 

Erst ab etwa 1950 begann das Tonbandgerät allgemein verfügbar zu werden. Es war einfach zu bedienen und billiger. Das Tonbandgerät machte es schließlich Schaeffer und Henry möglich Russolos Nutzungskonzept anzugehen und mithilfe elektronischer Medien
Alltagsgeräusche als musikalische Elemente zu simulieren, obwohl nicht klar ist, ob und wie sie von beeinflusst wurden von Russolo.

 

 

 

 

 

Posted in Afrigal Tagged with: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

November 25th, 2020 by Afrigal

udo matthias drums elctronic software

 

 

 

 

 

 

Schillinger System

Das Schillinger-System oder Schillinger System oder Schillinger Kompositionssystem ist ein Kompositionssystem, das insbesondere für Kompositionen Elektronischer Musik sowie für Filmmusik herangezogen werden kann und vom ukrainisch-amerikanischen Musiktheoretiker und Komponisten Joseph Schillinger entworfen wurde. Es ist genreunabhängig und setzt sich deutlich von traditionellen Kompositionsmethoden ab. Schillinger hat dieses System in den 1920er und 1930er Jahren entwickelt. Das Schillinger-System versucht, auf Zusammenhängen von Musik und Zahl aufzubauen.

https://archives.berklee.edu

Lawrence Berk circa 1948 erklärt Schillinger musikalischen system an seine Schüler.

Mingus speaks

Das Schillinger-System ist ein Versuch, eine definitive und verständliche Abhandlung zu den Zusammenhängen von Musik und Zahl zu liefern. Das hat den Nachteil, zu einer langen Abhandlung mit einer weithin elaborierten Begrifflichkeit zu führen (das wird durch den Umfang der betreffenden Veröffentlichungen bestätigt). Indem er Prinzipien der Organisation von Klang durch die wissenschaftliche Analyse aufdeckte, hoffte Schillinger darauf, angehende Komponisten von traditionellen Vorgaben der Musiktheorie zu befreien. Das System übte viel Einfluss auf die Jazzausbildung bis in die heutige Zeit aus.

https://www.youtube.com/user/DrArdejer

Das einflussreiche Berklee College of Music begann seine Existenz als Schillinger House of Music (1945–1954), als es nach Schillingers Tod (1943) vom Schillinger-Schüler Lawrence Berk in Boston gegründet wurde. Es baute auf dem Schillinger-System auf; aus dem Schillinger-System entstand in den 1960er Jahren die sogenannte Berklee Methode, die dort bis in die 1980er Jahre gelehrt und schließlich im Zuge der Entdeckung Digitaler Musikproduktion (vgl. Digital Audio Workstation) wieder aktuell wurde.

Zur Zeit seiner Gründung war das Institut eines der wenigen weltweit, an dem nicht nur klassische Musik unterrichtet wurde, sondern auch Jazz, Jingle-Writing für Radio- und Fernsehwerbung, sowie Theater- und Tanzmusik.

Vielleicht optimal algorhthmische Kompositionen.

Seit einiger Zeit häufen sich Anfragen in Blogs und Foren, wie das Schillinger-System in Computeranwendungen und Programmiersprachen umgesetzt werden kann. Ansätze gibt es bisher für algorithmische und interaktive Komposition, zum Beispiel in Csound. Walter Birg vom Zentrum für Elektronische Musik in Freiburg empfiehlt Komponisten, die sich mit algorithmischer Komposition befassen, explizit die Auseinandersetzung mit dem Schillinger-System. Mit Stratasynch ist auch ein GNU / Linux-basiertes Schillinger-Kompositionstool mit DAW-Implementation in ABC als Freeware erhältlich. Die Kapitel aus Schillingers Veröffentlichungen zu seinem System, die bei der Umsetzung des Tools eine Rolle spielten, sind dokumentiert.

 CHI: Mensch-Computer-Interaktion

https://www.capsces.com/stratasynch

https://www.fransabsil.nl/

Bereits in den 1930er Jahren hatte Schillinger sich dafür eingesetzt, dass es an der Wissenschaft sei, alte Kompositionspraktiken zu beseitigen. Nach seiner Emigration nach Amerika 1928 wurde Schillingers System in New York schnell populär. Schillinger besetzte an der New School in New York City ein Professorat und war Kompositionslehrer von so illustren Musikern wie George Gershwin, Benny Goodman, Stan Kenton, Glenn Miller, Paul Lavalle, Oscar Levant, Tommy Dorsey, Earle Brown, Toshiko Akiyoshi, Vic Mizzy, John Barry, Leith Stevens, Charles Previn, Vernon Duke und Carmine Coppola.

Große Teile der vorherigen Musikgeschichte, Kompositionslehre und des Instrumentenbaus verwarf er öffentlich als fehlerhafte Trial-and-Error-Versuche, die am fehlenden wissenschaftlichen Anspruch ihrer Macher gescheitert wären. Von diesen Urteilen nahm er weder berühmte Instrumentenbauer noch Komponisten wie Johann Sebastian Bach oder Ludwig van Beethoven aus. Zum Beispiel beschuldigte er Beethoven, kompositorische Vorgaben nicht stringent genug beachtet zu haben. Ludwig van Beethoven In dieser Zeit schrieb er Porgy and Bess und konsultierte Schillinger mehrfach hinsichtlich Fragen zur Oper und Orchestrierung.

Die Grundannahme hinter Schillingers System ist, dass Musik (entsprechend Eduard Hanslicks in den Musikwissenschaften vielfach anerkannter Definition von 1854) „tönend bewegte Form“ zum Inhalt hat. Für Schillinger bedeutete das, dass jede physische Aktion, jeder physische Prozess eine Entsprechung im musikalischen Ausdruck hat. Bewegung und Musik hielt er auf Grundlage des damaligen wissenschaftlichen Stands für verstehbar. Schillinger glaubte, dass bestimmte Motive (Patterns) Anspruch auf Universalität erheben könnten und in der Musik wie im Nervensystem des Menschen angelegt sind.

Das Vorwort zum postum 1946 erschienenen Referenzwerk Schillinger System of Musical Composition stammt von Henry Cowell. Er betont dort, dass das Schillinger-System im Unterschied zu konventionellen Kompositionsschulen keine Kompositionsregeln aufstelle, sondern stattdessen dem Komponisten eine Wahlfreiheit ermögliche.

Zofia Helman: „Vom aristotelischen Grundsatz ars imitatae naturae ausgehend entwickelt Schillinger die These, dass ästhetische Qualitäten der Musik auf geometrische Relationen ihrer Komponenten zurückgebracht werden können und dass Musik immer Gesetze der mathematischen Logik verwirklicht.“] 1953 propagierte Werner Meyer-Eppler den Parameterbegriff (Parametrisierung der Musik), den Schillinger in seiner postumen Veröffentlichung The Mathematical Basis of Arts (1948) in die Musik einbringen wollte: „Das Tonhöhen-, Zeit- und Klangkontinuum soll nach Schillinger parametrisiert und die Parameter [sollen] nun mit mathematischen Methoden transformiert und variiert werden.“

Das System enthält Theorien zu Rhythmus, harmonischer und melodischer Gestaltung, Kontrapunkt, Form und auch einer Semantik der Musik (zum Beispiel in Bezug auf Emotive (gefühlsbetont), wie sie in der auftragsabhängigen Filmmusik erzielt werden sollen). Der Ansatz bietet eine systematische und genreunabhängige Betrachtungsweise zu musikalischer Analyse und Komposition. Das Vorgehen Schillingers ist dabei eher deskriptiv als präskriptiv. Dazu entwickelte er unter anderem ein neues System der Musiknotation. Dabei war Schillingers System selbst nicht vollständig ausgearbeitet. Seine Theorie des Kontrapunkts deckt zum Beispiel nur den einfachen und den doppelten, nicht aber den mehrfachen Kontrapunkt ab. Studenten wie Jerome Walman erweiterten die Technik auf eine Vielzahl melodischer Kombinationen, was dazu führte, dass Walman schließlich ein eigenes System entwarf.

BUCH 1
Theorie des Rhythmus –
Kapitel 1
Notation System

A. Grafik-Musik
B. Formen der Periodizität

Kapitel 2
Störungen von Periodizitäten

A. Binäre Synchronisation
B. Gruppierung

Kapitel 3
Die Techniken der Gruppierung

Kapitel 4
Die Techniken der Fraktionierung

Kapitel 5
Zusammensetzung von Gruppen von Paaren

Kapitel 6
Nutzung von Drei oder Mehr Generatoren

A. Die Technik der Synchronisation

Kapitel 7
Resultants Angewendet Instrumental Forms

A. Instrumental Rhythm
B. die Anwendung der Grundsätze der Störung der Harmonie

Kapitel 8
Koordination von Zeit-Strukturen

A. Verteilung der Dauer-Gruppe
B. die Synchronisierung eines Angriffs-Gruppe
C. Verteilung einer Synchronisierten Dauer-Gruppe
D. die Synchronisierung von einer Instrumentalgruppe

Kapitel 9
Homogene und Gleichzeitigkeit von Kontinuität (Variationen)

A. Allgemeine und Zirkulären Permutationen

Kapitel 10
Verallgemeinerung der Variante Techniken

A. Permutationen der Höheren Ordnung

Kapitel 11
Zusammensetzung Homogener Rhythmische Kontinuität

Kapitel 12
Distributive Befugnisse

A. die Kontinuität der Harmonischen Kontraste
B. Zusammensetzung der Rhythmischen Counterthemes

Kapitel 13
Entwicklung des Rhythmus-Stile (Familien)

A. Swing-Musik

Kapitel 14
Rhythmen der Variable Geschwindigkeiten

A. Beschleunigung in Einheitliche Gruppen
B. Beschleunigung in Non-uniform Gruppen
C. Rubato
D. Fermate


BUCH ZWEI
Theorie der Pitch-Skalen
Kapitel 1
Pitch-Skalen und gleichstufige Stimmung

Kapitel 2
Die erste Gruppe von Pitch-Skalen: Diatonische und Verwandte Skalen

A. One-Einheit Skaliert. Null Abständen
B. Zwei-Einheit Skaliert. Ein Intervall,
C. Drei-Einheit Skaliert. Zwei Intervalle
D. Vier-Einheit Skaliert. Drei Intervallen
E. Skalen aus Sieben Einheiten.

Kapitel 3
Evolution von Ton-Skala Styles

A. in Bezug Pitch-Skalen durch die Identität der Intervalle.
B. in Bezug Pitch-Skalen durch die Identität des Pitch-Einheiten
C. Weiterentwickelt Pitch-Skalen durch die Auswahl von Intervallen.
D. Weiterentwickelt Pitch-Skalen durch die Auswahl von Intervallen.
E. Historische Entwicklung von Skalen.

Kapitel 4
Melodische Modulation und Variable Pitch Achsen

A. Primäre Achse
B. Key-Achse
C. Vier Formen der Achse-Beziehungen
D. die Modulation durch Gemeinsame Einheiten
E. Modulation durch Chromatische Veränderung
F. Modulation durch Identische Motive

Kapitel 5
Pitch-Skalen: Die Zweite Gruppe: die Waage in der Erweiterung

A. Methoden der Klanglichen Erweiterung
B. Übersetzung der Melodie in die Verschiedenen Erweiterungen
C. Variable Pitch Achsen (Modulation)
D. Technik der Modulation in der Waage der Zweiten Gruppe

Kapitel 6
Die symmetrische Verteilung der Pitch-Einheiten

Kapitel 7
Pitch-Skalen: Die Dritte Gruppe: Symmetrische Skalen

A. Tabelle der Symmetrischen Systemen Innerhalb 12/2
B. Tabelle der Arithmetischen Werte
C. Zusammensetzung des Melodischen Kontinuität in der Dritten Gruppe

Kapitel 8
Pitch-Skalen: Die Vierte Gruppe: Symmetrische Skalen, die von Mehr Als Einer Oktave Bandbreite

A. Melodische Kontinuität
B. Richtungs-Einheiten

Kapitel 9
Melodie-Harmonie-Beziehung in eine Symmetrische Systeme


BUCH DREI
Variationen der Musik mit Hilfe der Geometrischen Projektion
Kapitel 1
Geometrische Inversionen

Kapitel 2
Geometrische Erweiterungen


BUCH VIER
Theorie der Melodie
Kapitel 1
Einführung
A. Semantik
B. Semantik von Melodie
C. Vorsätzliche Biomechanischen Prozesse
D. Definition von Melodie

Kapitel 2
Vorläufige Diskussion der Notation
A. die Geschichte der Musikalischen Notation
B. Mathematische Notation, Allgemeine Komponente
1. Notation der Zeit
C. Spezielle Komponenten
1. Notation der Tonhöhe
2. Notation der Intensität
3. Notation und Qualität
D. Relativen und den Absoluten Standards
E. Geometrischen (Graph) – Notation

Kapitel 3.
Die Achsen der Melodie

A. Primäre Achse der Melodie
B. Analyse der Drei Beispiele
C. Sekundäre Achsen
D. Beispiele von Axial-Kombinationen
E. Selektive Kontinuität der Axial-Kombinationen
F. Zeit-Verhältnisse der Sekundären Achsen
G. Pitch-Ratios der Sekundären Achsen
H. Korrelation von Zeit und Pitch-Ratios der Sekundären Achsen

Kapitel 4
Melodie: Höhepunkt und Widerstand

A. die Formen des Widerstands Angewendet Melodischen Trajektorien
B. Verteilung der Höhepunkte in Melodischen Kontinuität

Kapitel 5
Überlagerung von Tonhöhe und Zeit an den Achsen

A. Sekundäre Achsen
B. Formen der Trajectorial Motion

Kapitel 6
Zusammensetzung des Melodischen Kontinuität

Kapitel 7
Zusätzliche Melodische Techniken

A. Nutzung der Symmetrischen Skalen
B. Technik des Zeichnens-Modulationen

Kapitel 8
Die Verwendung von Organischen Formen in der Melodie


BUCH FÜNF
Spezielle Theorie der Harmonie,
Kapitel 1
Einführung

Kapitel 2
Die Diatonischen System der Harmonie

A. Diatonischen Progressionen (Positive Form)
B. Historische Entwicklung der Zyklus Stile
C. Transformationen von S(5)
D. Voice-Leading
E. Wie mit Zyklen und Transformationen verbunden sind
F. Die Negative Form

Kapitel 3
Die Symmetrischen System der Harmonie

A. Strukturen der S(5)
B. Symmetrischen Verläufen. Symmetrische Null Zyklus (C0)

Kapitel 4
Die Diatonisch-Symmetrischen System der Harmonie (Typ II)

Kapitel 5
Die Symmetrischen System der Harmonie (Typ III)

A. Zwei Tonics
B. Drei Tonics
C. Vier Tonics
D. Sechs Tonics
E. Zwölf Tonics

Kapitel 6
Variable Verdoppelungen in Harmonie

Kapitel 7
Inversionen des S(5) – Akkord

A. Verdoppelungen von S(6)
B. Kontinuität der S(5) and S(6)

Kapitel 8
Gruppen Mit Übergabe Akkorde

A. Weitergabe Sechsten Akkorde
B. Kontinuität G6
C. Verallgemeinerung G6
D. Kontinuität der Verallgemeinerten G6
E. Verallgemeinerung der Übergabe Dritte
F. Anwendungen der G6 auf der Diatonischen-Symmetrischen (Typ II) und Symmetrischen (Typ III) Progressionen
G. Übergeben Vierten-sechsten Akkorde: S(6/4)
H. Zyklen und Gruppen Gemischt

Kapitel 9
Der Septakkord

A. Diatonische System
B. Die Auflösung von S(7)
C. Mit Negativen Zyklen
D. S(7) in der Symmetrischen Null Zyklus (C0)
E. Hybrid-Five-Part Harmony

Kapitel 10
Der Neunte Akkord

A. S(9) in das Diatonische System
B. S(9) in der Symmetrischen System

Kapitel 11
Die Elfte Akkord

A. S(11) in das Diatonische System
B. die Vorbereitung der S(11)
C. S(11) in der Symmetrischen System
D. In-Hybrid Four-Part Harmony

Kapitel 12
Verallgemeinerung von Symmetrischen Reihen

A. Generalisierte Symmetrische Progressionen, Angewandt auf Probleme Modulation

Kapitel 13
Die Chromatische System der Harmonie

A. Operationen aus dem S3 – (5) und S4(5) Grundlagen
B. Chromatische Veränderungen von der Siebten
C. Parallel Double Chromatik
D. Dreibett-und Vierbettzimmer Parallel Chromatik
E. Enharmonische Behandlung von die Chromatische System
F. Überlappende Chromatische Gruppen
G. Zeitgleich Chromiatic Gruppen

Kapitel 14
Modulationen in der Chromatische System

A. Indirekte Modulationen

Kapitel 15
Die Weitergabe Siebten Generalisierte

A. Generalisierte Vorbei Siebte in der Progression von Typ III
B. Verallgemeinerung der Weitergabe Chromatische Töne
C. Veränderte Akkorde

Kapitel 16
Automatische Chromatische Kontinuitäten

A. In Vier Teil-Harmonie

Kapitel 17
Hybrid Harmonic Kontinuitäten

Kapitel 18
Linking Harmonische Kontinuitäten

Kapitel 19
Eine Diskussion der Pedal-Punkte

A. Klassische Pedal-Point
B. Diatonische Pedal Point
C. Chromatische (Modulation) – Pedal Point
D. Symmetrische Pedal Point

Kapitel 20
Melodische Figuration; Vorläufige Untersuchung der Techniken

A. es werden Vier Arten der Melodischen Figuration

Kapitel 21
Suspensionen, Vorbei Töne und Vorgriffe

A. Arten der Aufhängung
B. Weitergabe Töne
C. Vorgriffe

Kapitel 22
Verzierungen

Kapitel 23
Neutral und Thematische Melodische Figuration

Kapitel 24
Kontrapunktische Variationen der Harmonie


BUCH SECHS
Der Zusammenhang von Harmonie und Melodie,
Kapitel 1
Die Melodization der Harmonie

A. Diatonische Melodization
B. Mehr als einen Angriff in der Melodie pro H

Kapitel 2
Komponieren Melodic Attack-Gruppen

A. Wie die Dauer, die für den Angriff-Gruppen der Melodie Komponiert
B. Unmittelbare Zusammensetzung der Dauer der Korrelation von Melodie und Harmonie
C. Chromatische Variante der Diatonischen Melodization
D. Symmetrische Melodization: Die Σ Familien
E. die Chromatische Variation des Symmetrischen Melodization
F. Chromatische Melodization der Harmonie
G. Statistische Melodization Chromatische Progressionen

Kapitel 3
Die Harmonisierung der Melodie

A. Diatonische Harmonisierung einer Diatonischen Melodie
B. Chromatische Harmonisierung einer Diatonischen Melodie
C. Symmetrische Harmonisierung einer Diatonischen Melodie
D. Symmetrische Harmonisierung einer Symmetrischen Melodie
E. die Chromatische Harmonisierung der Symmetrischen Melodie
F. Diatonische Harmonisierung einer Symmetrischen Melodie
G. Chromatische Harmonisierung der Chromatischen Melodie
H. Diatonische Harmonisierung der Chromatischen Melodie
I. Symmetrische Harmonisierung der Chromatischen Melodie


BUCH VII
Theorie des Kontrapunktes
Kapitel 1
Die Theorie der Harmonischen Intervalle
A. Einige Akustische Täuschungen
B. Klassifikation der Harmonischen Intervalle In der gleichstufigen von Zwölf
C. Auflösung der Harmonischen Intervalle
D. Auflösung der Chromatischen Intervalle

Kapitel 2
Die Korrelation von Zwei Melodien
A. Two-Part Counterpoint
B. CP/CF = a
C. Formen der Harmonische Korrelation
D. CP/CF = 2a
E. CP/CF = 3a
F. CP/CF = 4a
G. CP/CF = 5a
H. CP/CF = 6a
I. CP/CF = 7a
J. CP/CF = 8a

Kapitel 4
Die Zusammensetzung der Kontrapunktischen Kontinuität

Kapitel 5
Korrelation der Melodischen Formen in der zweiteiligen Kontrapunkt

A. Nutzung-Monomial Achsen
B. Binomial-Achsen-Gruppen
C. Trinomial Axial-Kombinationen
D. Polynom Axial-Kombinationen
E. Die Entwicklung Von Axial-Beziehungen, Die Durch Angriff-Gruppen
F. Störungen der Achse-Gruppen
G. Korrelation von Pitch-Zeit-Verhältnisse der Achsen
H. Komposition ein Kontrapunkt zu einer Gegebenen Melodie Mittels der Axial-Korrelation

Kapitel 6
Two-Part Counterpoint Mit Symmetrischen Skalen

Kapitel 7
Kanonen und Kanonischen Imitationen

A. Zeitliche Struktur der Kontinuierliche Imitation
1. Zeitliche Strukturen zusammengesetzt aus den teilen des resultants
2. Zeitliche Strukturen zusammengesetzt aus komplett resultants
3. Zeitliche strucres entwickelt mit Hilfe von Permutationen
4. Zeitliche Strukturen bestehend aus synchronisierten involution-Gruppen
5. Zeitliche Strukturen zusammengesetzt aus Beschleunigung-Gruppen und deren Umkehrungen

B. Kanonen, die in Alle Vier Arten der Harmonischen Wechselbeziehung

C. Zusammensetzung des Kanonischen Kontinuität durch Geometrische Inversionen

Kapitel 8
Die Kunst der Fuge

A. Die Form der Fuge
B. Formen der Imitation sich im Laufe der Vier Quadranten
C. Schritte in der Komposition einer Fuge
D. die Zusammensetzung des Themas
E. Vorbereitung auf die Ausstellung
F. Zusammensetzung der Exposition
G. Vorbereitung des Interludes
H. Nicht-Modulierende Interludes
I. Modulation Interludes
J. Montage der Fuge

Kapitel 9
Zwei-Teil Kontrapunktisch Melodization einer Bestimmten Harmonische Kontinuum

A. Melodization der Diatonischen Harmonie durch Zwei-Teil Diatonische Kontrapunkt
B. Chromatization Zwei-Teil Diatonische Melodization
C. Melodization der Symmetrischen Harmonie
D. Chromatization einer Symmetrischen Harmonie
E. Melodization Chromatische Harmonie durch Zwei-Teil Kontrapunkt

Kapitel 10
Angriff-Gruppen Für Zwei-Teil Melodization

A. Zusammensetzung von Dauer
B. Unmittelbare Zusammensetzung von Dauer
C. Zusammensetzung der Kontinuität

Kapitel 11
Harmonisierung der zweiteiligen Kontrapunkt

A. Diatonische Harmonisierung
B. Chromatization der Harmonie, mit Zwei-Teil Diatonische Kontrapunkt (Typen I und II)
C. Diatonische Harmonisierung der Chromatische Kontrapunkt, deren Herkunft Diatonische (Typen I und II)
D. Symmetrische Harmonisierung der Diatonischen Two-Part Counterpoint (Typen I, II, III, und IV)
E. Symmetrische Harmonisierung der Chromatischen zweiteiligen Kontrapunkt
F. Symmetrische Harmonisierung der Symmetrischen Zwei-Teil Kontrapunkt

Kapitel 12
Melodische, Harmonische und Kontrapunktische Ostinato

A. Melodische Ostinato (Basso)
B. Harmonische Ostinato
C. Kontrapunktischen Ostinato


BUCH ACHT
Instrumental Forms
Kapitel 1
Vermehrte Angriffe

A. Nomenklatur
B. Quellen der Instrumental-Formen
C. Definition of Instrumental Forms

Kapitel 2
Schichten aus Einem Teil

Kapitel 3
Schichten aus Zwei Teilen

A. Allgemeine Klassifizierung von I (N = 2p)
B. Instrumental Formen der S-2p

Kapitel 4
Schichten von Drei Teilen

A. Allgemeine Klassifizierung von I (N=3p)
B. Entwicklung von Angriffs-Gruppen Mittels der Koeffizienten der Wiederholung
C. Instrumentaler Formen der S-3p

Kapitel 5
Schichten von Vier Teilen

A. Allgemeine Klassifizierung von I (N=4p)
B. Entwicklung von Angriffs-Gruppen Mittels der Koeffizienten der Wiederholung
C. Instrumentaler Formen von S=4p

Kapitel 6
Komposition der Instrumentalen Schichten

A. Identisch Oktave Positionen
B. Akustische Bedingungen für die Einstellung der Bass –

Kapitel 7
Einige Instrumentellen Formen des Begleiteten Melodie

A. Melodie mit Harmonischer Begleitung
B. Instrumental-Formen Duett mit Harmonischen Begleitung

Kapitel 8
Der Einsatz von Richtungs-Einheiten bei Instrumentellen Formen der Harmonie

Kapitel 9
Instrumental Formen der zweiteiligen Kontrapunkt

Kapitel 10
Instrumental-Formen für Klavier-Komposition

A. Position der Hände mit Bezug auf die Tastatur


BUCH NEUN
Allgemeine Theorie der Harmonie: Schichten Harmonie,
Kapitel 1
One-Part Harmony

A. Einer Schicht von Einem Teil der Harmonie

Kapitel 2
Zwei Teil-Harmonie
A. Einer Schicht von Zwei Teil-Harmonie
B. Ein -, Zwei-Teil Stratum
C. Zwei-Hybrid-Schichten
D. Tabelle der Hybrid-Drei-Teil-Strukturen
E. Beispiele von Hybrid-Drei-Teil-Strukturen
F. Zwei Schichten von Zwei-Teil-Harmonien
G. Beispiele von Reihen in Zwei Schichten
H. Drei Hybrid-Schichten
I. Drei, Vier und Mehr Schichten von Zwei-Teil-Harmonien
J. Diatonische und Symmetrische Grenzen und die Verbindung Sigmae der Zwei-Teil-Schichten
K. Compound Sigmae

Kapitel 3
Drei Teil Harmonie
A. Einer Schicht von Drei Teil Harmonie
B. Transformationen von S-3p
C. Zwei Schichten der dreiteiligen Harmonien
D. Drei Schichten der dreiteiligen Harmonien
E. Vier und Mehr Schichten der dreiteiligen Harmonien
F. Die Grenzen der dreiteiligen Harmonien
1. Diatonische Limit
2. Symmetric Limit
3. Zusammengesetzte Symmetrische Grenze

Kapitel 4
Vier Teil-Harmonie

A. Einer Schicht von Vier Teil-Harmonie
B. Transformationen von S-4p
C. Beispiele von Weiterentwicklungen der S-4p

Kapitel 5
Die Harmonie der Viertel

Kapitel 6
Weitere Daten, die auf Vier-Part-Harmony

A. Besondere Fälle der vierteiligen Harmonien, die in Zwei Schichten
1. Hubkolben-Schichten
2. Hybrid-Symmetrischen Schichten
B. Verallgemeinerung der E-2S; S-4p
C. Drei Schichten der vierteiligen Harmonien
D. Vier-und Mehr Schichten der vierteiligen Harmonien
E. Die Grenzen der vierteiligen Harmonien
1. Diatonische Limit
2. Symmetric Limit
3. Zusammengesetzte Symmetrische Grenze

Kapitel 7
Variable Anzahl von Teilen in den Verschiedenen Schichten einer Sigma

A. Bau von Sigmae die Zugehörigkeit zu einer Familie
1. Σ=S
2. 1. Σ=4S
B. Sequenzen mit Variablen Sigma
C. Verteilung der Gegebene Harmonische Kontinuität Durch Schichten

Kapitel 8
Allgemeine Theorie der gerichteten Einheiten

A. Directional Einheiten Sp
B. Richtungs-Einheiten S2p
C. Richtungs-Einheiten S3p
D. Richtungs-Einheiten S4p
E. Strata Zusammensetzung von Baugruppen Mit Richtungs-Einheiten
F. Folgende Gruppen von Richtungs-Einheiten

ANWENDUNGEN DER ALLGEMEINEN HARMONIE

Kapitel 9
Zusammensetzung des Melodischen Kontinuität von Schichten

A. Melodie aus einem einzelnen Teil der Schicht
B. Melodie von 2p, 3p, 4p S
C. die Melodie von S
D. Melodie von 2S, 3S
E. Verallgemeinerung der Methode
F. Gemischte Formen
G. Verteilung der Nebenaggregate durch p, S und Σ
H. Variation des ursprünglichen melodischen Kontinuität durch Verzierungen

Kapitel 10
Zusammensetzung der Harmonische Kontinuität von Schichten

A. der Harmonie von einem stratum
B. Harmonie von 2S, 3S
C. die Harmonie von Σ
D. Muster der Verteilung
E. Anwendung von Nebenaggregaten
F. Variation, die durch Nebenaggregate

Kapitel 11
Melodie Mit Harmonischer Begleitung

Kapitel 12
Korreliert Melodien

Kapitel 13
Zusammensetzung der Kanoniker Von Schichten Harmonie

A. Zwei-Teil Continuous Imitation
B. Drei-Teil Continuous Imitation
C. Vier-Teil Continuous Imitation

Kapitel 14
Korreliert Melodien Mit Harmonischer Begleitung

Kapitel 15
Zusammensetzung der Dichte In Seine Anwendungen zu Schichten

A. Technische Prämisse
B. Zusammensetzung von Dichte-Gruppen
C. Permutation sequent Dichte-Gruppen
D. Phasischen Drehwinkel Δ und Δ→
E. Praktische Anwendungen Δ→ Σ→


BUCH ZEHN
Evolution von Ton-Familien (Stil)
– Kapitel 1
Pitch-Skalen als eine Quelle der Melodie

Kapitel 2
Harmonie
A. Diatonische Harmonie
B. Diatonische-Symmetrischen Harmonie
C. Symmetrischen Harmonie
D. Schichten (Allgemein) Harmony
E. Melodische Figuration
F. die Umsetzung von Symmetrischen Wurzeln der Schichten
G. Compound Sigma

Kapitel 3
Melodization der Harmonie

A. Diatonische Melodization
B. Symmetrische Melodization
C. Fazit


BUCH ELF
Theorie der Zusammensetzung
Einführung

Teil I
KOMPOSITION THEMATISCHE EINHEITEN

Kapitel 1
Komponenten von Thematischen Einheiten

Kapitel 2
Zeitliche Rhythmus als Wichtige Komponente

Kapitel 3
Pitch-Skala, Die Als Wichtigen Bestandteil

Kapitel 4
Melodie Als Wichtige Komponente

Kapitel 5
Harmonie Als Wichtige Komponente

Kapitel 6
Melodization Als Wichtige Komponente

Kapitel 7
Kontrapunkt Als Wichtige Komponente

Kapitel 8
Die Dichte Der Wichtigsten Komponente

Kapitel 9
Instrumental Ressourcen Als Wichtige Komponente

A. Dynamics
B. Ton-Qualität
C. Formen des Angriffs

TEIL II
ZUSAMMENSETZUNG DER THEMATISCHEN KONTINUITÄT

Kapitel 10
Musikalische Form

Kapitel 11
Formen der Thematischen Reihenfolge

Kapitel 12
Zeitliche Koordination der Thematischen Reihenfolge

A. Nutzung der Resultants von Störungen
B. Permutations-Gruppen
C. Involution-Gruppen
D. Beschleunigung-Gruppen

Kapitel 13
Integration der Thematischen Kontinuität

A. Transformation der Thematischen Einheiten, die in Thematischen Gruppen
B. die Transformation des Probanden in Ihre Modifizierten Varianten
1. Zeitliche Änderung eines Subjekts
2. Intonational Änderung des Gegenstandes
C. Axial Synthese von Thematischen Kontinuität

Kapitel 14
Die Planung einer Komposition

A. Uhr-Dauer einer Komposition
B. Zeitliche Sättigung einer Komposition
C. Auswahl der Anzahl der Themen und Thematische Gruppen
D. Auswahl der Thematischen Reihenfolge
E. Zeitliche Verteilung der Thematischen Gruppen
F. die Realisierung der Kontinuität in Bezug auf t und t‘
G. Komposition Thematische Einheiten
H. Zusammensetzung der Thematischen Gruppen
I. Zusammensetzung des Key-Achsen
J. Instrumentale Komposition

Kapitel 15
Monothematischen Zusammensetzung

A. „Lied“ aus „Die Erste Airphonic Suite“
B. „Mouvement Electrique et Pathetique“
C. „Trauermarsch“ für Klavier
D. „Study in Rhythm I“ für Klavier
E. „- Studie, die im Rhythmus II“ für Klavier

Kapitel 16
Polythematic Zusammensetzung

TEIL III
SEMANTISCHE (DEUTEN) ZUSAMMENSETZUNG

Kapitel 17
Semantische Grundlage der Musik

A. Entwicklung des Sonic-Symbole
B. Konfigurations-Orientierung und die Psychologische Zifferblatt
C. Erwartung-Erfüllung-Muster
D. Übersetzen Reaktions-Mustern in Geometrischen Konfigurationen
E. Komplexe Formen des Stimulus-Response-Konfigurationen
F. Spatio-Temporal Associations

Kapitel 18
Zusammensetzung der Sonic-Symbole

A. Normal (Kreis mit Uhr Seite 12) Gleichgewicht und Ruhe
B. Oberen Quadranten der Negativen Zone (Kreis mit 9 bis 12-Quadranten-dunkel) Unzufriedenheit, Depression und Despari
C. Oberen Quadranten der Positiven Zone (Kreis mit 12 zu 3-Quadranten-dunkel -) Zufriedenheit, Stärke und Erfolg
D. Unteren Quadranten der Beiden Zonen (Kreis mit 3 bis 9 halb dunkel) Assoziation durch Kontrast: Der Humorvolle und Fantastisch

Kapitel 19
Zusammensetzung der Semantischen Kontinuität

A. Modulation der Sonic-Symbole
1. Zeitliche Modulation
2. Intonational Modulation
3. Configurational Modulation
B. die Koordination der Sonic-Symbole
C. Klassifizierung von Reiz-Reaktions-Mustern


BUCH ZWÖLF
Theorie der Orchestrierung

 

 

 

 

Posted in Afrigal Tagged with: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,